Saarland University
Faculty of Natural Sciences and Technology |
Department of Computer Science

Bachelor thesis

Extracting Point Features for Symmetry Detection

submitted by

Daniel Mewes

submitted

November 8" 2010

Supervisor

Dr. Michael Wand

Advisor

Alexander Berner

Reviewers

Prof. Dr. Hans-Peter Seidel
Dr. Michael Wand






Eidesstattliche Erklarung

Ich erklare hiermit an Eides Statt, dass ich die vorliegende Arbeit selbststandig verfasst und keine
anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Statement under Oath

| confirm under oath that | have written this thesis on my own and that | have not used any other
media or materials than the ones referred to in this thesis.

Einverstandniserklarung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen in die Bibliothek der
Informatik aufgenommen und damit veréffentlicht wird.

Declaration of Consent

| agree to make both versions of my thesis (with a passing grade) accessible to the public by having
them added to the library of the Computer Science Department.

SE-E o] ¥ o1 (=) o 1P
(Datum / Date) (Unterschrift / Signature)




I thank Alexander Berner and Michael Wand for their helpful
comments and advise.

I would further like to thank everyone at the Max-Planck-
Institut fir Informatik Saarbriicken for maintaining an
extraordinary friendly and inspiring workplace atmosphere.



Table of Contents

I o T 11T o) o SO 1
2 Related WOKK..........e s s s s rrrsnmss s s s e s s e e s s s s e s e e s e nnnmnn s s s s e e e nnnnsnnnns 5
3 Problem Definition........cccir e 9
3.1 SYMMELrY FEATUIES. ... . e e e e e e e eeeas 11
3.2 Problems in the Extraction of Symmetry Features.............ccocceiiiiiiiiiiiiiiee 12
3.3 Use Cases and AdVantages. ... ...coueiiuiiieaaiiiiee et e e e e et a e et e e e e eeneeee e e s enneeens 13

4 Our Approach to Symmetry Feature Extraction........ccccccvvveriirrierriesenneeennnnnes 15
4.1 Definitions and NOtatioNS..........ooo oo 16
4.2 Basic ldea of our FrameworK............c...uuiiiiiiiiii e 18
4.3 PIPEHINE OVEIVIEW. ... ..ottt e e e e e e e e e e e e e e e e e e e s e e e e e e e e eeenanennnnes 19
4.4 Propagation Function Applicability ANalySis...........oooiiiiiiiiiiiiie e 21
4.5 Feature Guess Data Representation Methods...............oooooiiiiiiiiiiii 24
4.5.1 Implicit Guess Representation.............coooiiii i 24

4.5.2 Explicit Guess Representation...........coccueiveiiiiiiiie s 25

4.5.3 Hybrid APPrO@CK.......eeiiiieee ettt e 30

4.6 Feature Guess DistribUtioNnS..............ueeiiiiiiiiiiiiee e 31
4.6.1 Discretizing a Continuous Distribution..............cccoeiii i 31

4.6.2 Gaussian Dot DistribUtioN..............oooiiiiiiiiiiii e 32

4.6.3 Gaussian Radius Sphere Distribution...........cccccceoiiiiiiiii e 33

4.6.4 Multiplicative DistriDULION.............eiiiiiii e 35

4.6.5 Merged DistribDUtION...........ouiiiiiiiiee e 35

4.7 Feature-to-Feature Correspondence ExXtraction.............cccceiiiiiiiiii i 37
4.8 Instances of Framework Functions and their Implementation.............ccccccceeiiiiii. 38
4.8.1 Interest FUNCHONS. ... 39
4.8.2 Combiner FUNCHONS. .......uuiiiiiiiiieee et e e e e e 43

4.8.3 SeleCtion FUNCHONS. ......ccoiiii et a e e e e e s e e e e e e e 46

4.8.4 Propagation FUNCHONS...........uiiiiiiiii e 48

5 Evaluation.......ccccciiiiiiii s 59
5.1 Feature Extraction RESUILS...........ccccuiiiiiiiiiiee e 61
5.1.1 Choice Of Parameters.........oooeioiiiiicieeee et 62

5.2 Correspondence Extraction RESUILS.............cooiciiiiiiiiiiie e 66
5.2.1 Choice Of Parameters...........uuuiiiiiiiiieieii et e e 67

5.3 Propagation Function Applicability.............eeveeeieiiiiiiiie e 69
5.4 Problems and LimitationS.............uuuiiiiiiiiiiiii e 71

L0 o T 0 T [ =3 T o 73

A 53 (= =] 0 Lo = 75






1 Introduction

The increasing demand for high-quality 3D models for use in computer games, navigation,
augmented reality applications etc., makes data acquisition through real-world digitalization
increasingly useful. Robust symmetry detection provides a powerful tool to support
processing, editing and storage of such data. Symmetry detection poses the problem of auto-
matically detecting repeating structures in a scene. Specifically, such information can be
used for efficient data compression, simultaneous 3D model editing (modifications to one
instance of a symmetry are automatically transferred to other instances), intelligent data
reconstruction and/or automated scene modeling.

While symmetry detection is computationally expensive — especially if imperfections in the
input data have to be accounted for — the extraction of features allows to significantly reduce
the amount of data that has to be considered. This is usually done by first selecting candi-
dates for symmetries based on the set of discrete features, and then validating those candi-
dates against the complete scene data. Unfortunately, this approach has the problem that
the set of symmetries detected in the feature data imposes an upper bound on which symme-
tries can be detected in the underlying scene.

We introduce the notion of a set of symmetry features to describe feature points which are
consistent across all instances of some symmetry in the scene. A set of symmetry features
ensures that symmetries in the underlying point cloud also impose a corresponding
symmetry structure in the set of feature points and therefore enables subsequent point-fea-
ture-based symmetry detection to detect exhaustive sets of symmetries.

It turns out that the extraction of symmetry feature points requires knowledge about the
global structure of the scene. We propose a framework that interleaves preliminary feature
point extraction and partial symmetry detection in an iterative way. Additionally we intro-
duce the idea of small-scale sub-symmetries and propose an algorithm to detect such. A sub-
symmetry is a fixed-size constellation of corresponding feature points. By overlaying the
information we get from a large number of sub-symmetries, we are able to retrieve robust
structural information that we employ within our framework to improve the extracted
feature sets.



@] [+ ~(b)

Figure 1: Example for intermediate results of our pipeline

Our approach to symmetry feature extraction can be summarized as follows:

Given a point sampled 3D scene as our input data (figure 1a), we first calculating local per-
point feature scores. For this we employ existing algorithms, namely local slippage analysis
([Gelfand et al. 2004]) and Gaussian curvature estimation. Based on the local scores, we
extract an initial set of feature points (figure 1b). Using these features, we apply global sub-
symmetry detection. By this, we get information about the scene's structure, which we use
to generate stochastic guesses about additional features. Figure 1c shows an example of how
such guesses can be derived from sub-symmetry information: The black, red, yellow and blue
points mark instances of a detected sub-symmetry. For three of the four instances, the
feature point under the yellow circle exists in the neighborhood. A guess about a corre-
sponding feature point in the fourth instance at the position of the blue circle is derived from
that information.

Having extended our knowledge about potential features, we incorporate all guesses into the
previously calculated per-point scores and select a refined set of feature points (figure 1d).
We iterate the steps of symmetry detection and refined feature selection for a number of
times, until the final set of feature points is achieved (figure 1e).



Applying an implementation
of our framework to scanned
real-world data, we were able
to significantly improve the
set of extracted feature
points over the feature sets
selected from local-criteria
only. Figure2 shows an
example of feature points
extracted for a scanned real-
world 3D data set. Further-
more, we were able to utilize
sub-symmetry detection to
extract feature-to-feature
correspondence classes.
While those lack a whole-
scene-based validation in our
implementation, they can

Figure 2: Blue feature points were selected with the help of
global symmetry information. We were able to recover all
eight missing feature points in the upper row of windows.
(old Hannover town hall data set)

provide a starting point for subsequent full-fledged symmetry detection.

The structure of this thesis is as follows:

In section 2 we give a short overview on related work from the areas of symmetry detection

and feature extraction. Section 3 contains an explanation of the exact problem we are trying

to solve within this thesis. Our solution to this problem is presented in section 4, where we

introduce our framework and provide detailed documentation of all of its parts. Implementa-

tion details which are not required for an understanding of our framework are provided in

separate boxes. In section 5, we present results of the framework using different data sets

and parameters and discuss relevant observations. We give a brief conclusion on the results

of this thesis and provide an outlook on future research in section 6.






2 Related Work

An early approach for detection of approximate rigid symmetries is described in [Alt et al.
1988]. They introduce the notion of “approximate congruence” and give a formal definition of
such. The runtime complexity of their algorithm is shown to be in O ng) for the case of two-
dimensional point sets of no more than 7 points. For translational symmetries the
complexity of their algorithm is still O(n())- While their paper provides a lot of useful
formalisms and extensive proofs, the runtime complexity of the proposed algorithms essen-
tially rule out the application to large data sets.

A more practical approach is proposed by [Mitra et al. 2006]. They reduce the problem of
approximate symmetry detection for three dimensional point sets to finding clusters in a
seven-dimensional transformation space. The basic idea is known as “transformation voting”
and in the case of [Mitra et al. 2006] works as follows (compare figure 3):

Bl

input model sample set signatures transformations density surface patches

\bmj\»mj\’mjk’mj\» DﬂtCh'"Q j

Figure 3: Symmetry extraction pipeline from [Mitra et al. 2006]

Given a 3D point set, first perform sub-sampling for improved practical performance. For the
subset, generate local per-point normal and principal curvature data (assuming the point set
is a manifold). Then pairs of points are considered. For each such pair, a vector in R’ is
generated, which describes a scaled rigid transformation based on a scaling factor derived
from the ratio between both points' principal curvatures, three rotational components which
are derived based on both points' normal and principal curvature directions (those form a
local coordinate frame which is invariant under rigid transformation and scaling), and three
translational coordinates. All generated pairs are placed in a unified seven-dimensional
transformation space. Clusters of point-pairs in this space give candidates for rigid symme-
tries, which are then brought over to the original point set.

[Pauly et al. 2008] employ a different kind of transformation-based voting to detect one- and
two-dimensional grid structures in 3D shapes. A one-dimensional grid structure over a
shape ()c|R’ can be characterized by a transformation f: R’ R’ and an initial instance

_5-



Sc , such that fi(S)cQ with /€N at least for all i<#n,n€IN. In other words: the
transformation f can be repeatedly applied on the instance S without leaving the shape.
Two-dimensional grids have two such transformations £, f,:IR’—IR’ which can be
applied on S in any order while still giving subsets of (2. In order to identify such grid
transformations in a scene, [Pauly et al. 2008] detect “line structures” in transformation
space. More specifically, they detect a grid transformation f ‘IR*—>IR® represented by its
scaling s€IR, rotational Rec|R’® (one angle per canonic axis) and translational ;cR’
components by looking for incidental transformations f'= 7' jcIN . These transformations
are exactly those which have a scaling factor of is, a rotational component of i R and a
translational component of ;7.

” o0

Figure 4: Isometric subgraph detection

Approaches based on transformation voting have the general disadvantage of neglecting the
spatial relation between points in the scene. Point-pairs from completely unrelated locations
can still end up at the exact same position in transformation space. [Berner et al. 2008] take
a different approach to symmetry detection. They employ feature points and explicitly utilize
the locality of feature points participating in any single instance of some symmetry. Their
overall idea is as follows: First extract a set of feature points (here: slippage features, see
below) together with a local feature point descriptor. Then build a graph over the feature
points by connecting spatially nearby features with an edge and annotate each edge by its
length. Figure 4 shows a schematic example for such graph. Symmetry candidates are identi-
fied by looking for repeating subgraphs, for which each instance matches with respect to the
feature descriptors and the edge lengths. To make the detection of such isometric subgraphs
computationally feasible, a RANSAC approach is taken. Feature-based symmetry candidates
are then transferred to the whole point set and verified. Our approach to symmetry detection
(see chapter 4.8.4) is inspired by [Berner et al. 2008] in the sense that we also consider the
metric relation between feature points to detect symmetry candidates.

The problem of point feature extraction is tackled for example by [Lowe 1999]. Lowe extracts
feature key points from 2D image data by looking for points which are local extrema consis-
tently across variants of the input image filtered with Gaussian kernels of different scale.
The key-points are annotated with a local descriptor to form “SIFT” features.



[Bokeloh et al. 2008] perform local slippage analysis on 3D point sets and select points of low
slippability as feature points. Local slippage analysis as proposed by [Gelfand et al. 2004]
provides a metric on how well the alignment of a small local patch to itself is constrained. We
utilize slippage analysis within our framework to get a starting point for feature extraction.
In chapter 4.8.1 we will further describe the idea of slippage analysis.

[Yilmaz et al. 2009] establish a global stochastic model which incorporates local texture data
and location information, in order to robustly extract facial features from image data. While
the idea of globally optimized feature detection is comparable to what we want to achieve,
their method requires specific training for the single kind of objects that features are to be
extracted for.

A lot of work also exists about the extraction of non-point features from point sets, for
instance [Gumhold et al. 2001] or [Bokeloh et al. 2009] for line feature extraction. For
simplicity reasons, we only consider point features within this thesis however.






3 Problem Definition

Automatic symmetry detection is the problem of finding repeating structures in a scene.

One representation for 3D scenes is a finite point cloud (Qc|R’ . This form of representation
especially has the advantage of being easily obtainable for real-world objects by the use of 3D
scanners. Also most other representations — like triangle meshes, implicit surfaces etc. — can
be easily sampled as a point cloud. In practice, most scenes are two-dimensional manifolds
essentially. Triangle meshes for example do not even support non-manifold scenes. The
manifold property allows to define additional per-point properties such as normal directions
and local curvature. In the following we assume the scene represented by (2 to be a 2D
manifold.

A symmetry over (2 can be described as a set Sc(2 together with a number of transforma-
tions f,..., f,:S— 2. Automatic symmetry detection is about finding such subsets with
corresponding transformations given the scene (QcIR’.

For practical relevance, a symmetry should be “meaningful”. In any scene (2, there are 2l

different subsets Sc(2 , each allowing for at least an exponential number of corresponding
transformations. Additional criteria are required to make the given definition of a symmetry
useful. As a first step we limit the set of potential transformations. Intuitively, one would for
example expect that point neighborhoods are pertained by each f,. More exactly: if
x,y€L) are near to each other, f ,.(x) and f ,-( y) should be near to each other too.
Analytically speaking, [, should be a continuous mapping. Apart from this criteria for

potential symmetry transformations, the set S should be of a certain minimum size to form
a “meaningful” symmetry.
One subset of symmetry transformations are rigid transformations. A rigid transformation is
a composition of translational, rotational and mirroring transformations. For a rigid trans-
formation f,;:S— 2, it follows that for every two points x,yeS it is
||x—y||:||fi(x)—f,.(y)H . A symmetry where f,,...,f, are rigid transformations, is
called a rigid symmetry. In practice, the sampling (2 of the underlying scene as well as
noise in the data usually make such symmetries impossible to find. More practical are such
symmetries which have transformations that are approximately rigid, with |[x—y| and
H f.(x)—f.( y)” being equal up to some error. Whenever speaking of rigid symmetries in

the following, we actually refer to approximate rigid symmetries.



Applications for symmetry detection range from simultaneous editing, over data compres-
sion, to scan data reconstruction. Symmetry information has also been used to perform auto-
mated modeling, for example in [Bokeloh et al. 2010].

Unfortunately, symmetry detection is a computationally expensive process. Even in the
comparably simple case of rigid symmetries, a minimum of one pair of corresponding points
is required to define a rigid transformation f,. This is for points with additional normal
and principal curvature information available, as this information is required to constrain
the rotational and mirroring components of a rigid transformation. If no such information is
available, a total of six points (three points corresponding to three others) is required. Given
a transformation /', and a pair of initial points x,ycQ with [ (x)=y, a corresponding
set of points S such that f,(S)CQ can usually be derived by successive area growing,
This works by adding neighbor points to S successively, each time checking that the criteria
f,(S)=Q is still met. Even then, just checking all potential symmetry transformations has
runtime complexity in @(|Q|2) at least. Various techniques exist to minimize the cost of

symmetry detection. Examples are:
— Randomized approaches, especially RANSAC ([Fischler et al. 1981])

— Operating on a downsampled subset of (2 (e.g. [Mitra et al. 2006], [Pauly et al.
2008])

— Feature-based approaches (e.g. [Berner et al. 2008], [Bokeloh et al. 2009])

These techniques can also be combined. For example [Bokeloh et al. 2009] use a RANSAC
candidate loop over a feature set.

A set of features provides a characteristic subset of all available information about the scene
(here: (). In order to deploy features in symmetry detection, the idea is to first detect
symmetry candidates from the feature set. Then, only those candidates have to be verified
against the complete data. While there are different classes of features, the conceptually
simplest one are point features. A set of point features = for the scene (Qc|R’ is a subset of

IR? . While not strictly necessary, we restrict = to points in (2 for practical reasons (i.e.
ZcQ).

To increase the descriptiveness of a feature point, a transformation invariant descriptor can
be added to each feature point, incorporating information about the point's environment.
[Bokeloh et al. 2008] for example employ a curvature-based descriptor. Often the word
feature point is used to describe the combination of a point £cCZ together with its
descriptor, while & alone is called a key-point to distinguish between both. Here, we will
also call the point alone a feature point, as descriptor information is not used throughout
this thesis.

-10 -



3.1  Symmetry Features

Let QcR’ be a finite set of points in 3D-space, which describes the scene we want to
analyze.

Let there be subsets S,,...,5,©(2 and corresponding mappings f,:S,—Q,..., f, :S,—Q
which describe some symmetries in the scene.

We call a set of feature points Zc() a set of symmetry features with respect to these
symmetries, whenever we have x€S,NZ= f,(x)€Z, which is all symmetry transforma-

tions /,..., [, areclosedin = .

The definition of symmetry features ensures that in order to detect symmetries in (2, it is
possible to first search symmetries in a corresponding set of symmetry features and by doing
so generating a superset of all the symmetries which exist in the actual scene .

-11 -



3.2 Problems in the Extraction of Symmetry Features

Depending on the scene to be analyzed, it can be impossible to locally (i.e. by just considering
properties of the point itself and some fixed-size neighborhood) decide if any given point of
the scene is to be considered a symmetry feature. There are two classes of problems which
may arise when trying to do so:

1. Noisy and/or erroneous data: It is desirable to be able to extract symmetry features in
real-world scenes. In order to do this, the scene first has to be digitalized. This is
often done using 3D laser scanners. Unfortunately, the scanning process incorporates
various sources of errors. For example both reflective and very dark material impose
a problem for laser scanners. These errors can lead to noisy or badly constrained data
points. Such errors in point positions are not always recoverable by means of local
post-filtering, as errors can be biased and/or indistinguishable from actual structure.

2. Structural problems: Sometimes the

local structure of the scene itself makes
it impossible to extract a complete set of
symmetry features using local criteria.
While there might be no local indication
for a certain point to be a symmetry
feature, the global symmetry structure
of the scene can still make it desirable to
selected such point. Figure 5 illustrates
the problem: While for the “inner”
scales, the red points qualify locally as

significant feature points, there is no

such indication for a corresponding Figure 5: Structural problem example

feature point on the “outer” scales. To  (Asian Dragon model from the Stanford
obtain a valid set of symmetry features, 3D Scanning Repository)

the detection of the points marked
yellow would be necessary.

We propose a framework to extract approximate sets of symmetry features while working
around these two classes of problems.

As a third class of problems, there might be holes in the scene. Using our definition of
symmetry features from chapter 3.1, which only speaks about points contained in the scene,
this does not strictly impose a problem for extracting symmetry features. In practical appli-
cations it is often desirable to work around holes nonetheless. Our framework has no direct
support for fixing this kind of error. However it can often be reduced to a problem of class
one by filling holes using for example Poisson reconstruction as described in [Kazhdan et al.
2006].

-12 -



3.3 Use Cases and Advantages

The designated way of use for our framework is the extraction of feature points for use in a
subsequent symmetry detection step. As features are usually used to derive a superset of
symmetries in the scene, it is important that the feature-based symmetries do not miss a
valid symmetry candidate. While having a set features which is too large can usually be
handled well by symmetry detection algorithms (it only leads to additional symmetry candi-
dates, which are filtered out during validation), the superfluous features reduce the perfor-
mance of symmetry detection. [Berner et al. 2008] for example use RANSAC-based isometric
subgraph extraction to retrieve symmetry candidates. Their approach can handle the one or
other additional feature without problems as this does not destroy the common subgraph
property. If feature points are largely inconsistent across instances of some symmetry or
important feature points are lacking in some instances however, detecting such symmetries
anyway gets much harder. The problem is especially present for symmetries which struc-
turally have only a low number of feature points per instance. In these cases missing feature
points have an especially severe effect.

Our framework provides a technique to selectively complete feature points participating in
symmetries. This can improve the results of point-feature-based symmetry detection algo-
rithms.

Additionally, our framework is capable of providing feature-to-feature-point pairwise corre-
spondence scores. We will describe in chapter 4.7 how this information can be used to extract
feature correspondence classes in a simple way. While — due to their derivation from feature
point positions only in the current implementation — the correspondence information
provided is not guaranteed to be correct with respect to the underlying scene geometry
(compare chapter 5), the information can be used as an initialization for subsequent full-
scene symmetry detection. In the simplest form, an additional full-scene-based growing and
validation step might be sufficient to extract reasonable symmetries. Such symmetry detec-
tion could profit from the robustness of the overlaying sub-symmetry approach that we
describe in chapter 4.8.4.

-13-



-14 -



4 Our Approach to Symmetry Feature Extraction

We present a practical way to extract approximate symmetry features for rigid symmetries.
For this we introduce a general algorithmic framework to enable symmetry feature extrac-
tion and propose the idea of metric sub-symmetry detection, which due to its robustness
against incomplete feature point sets is especially well suited for operating within that
framework.

We start by introducing a number of notations and provide brief definitions for the terms we
are using (chapter 4.1). We then give a short overview of our framework (chapters 4.2 and
4.3) and describe a method for automated propagation function applicability analysis
(chapter 4.4). In part 4.5, we evaluate different data representation methods for feature
evidence. Further, we describe an algorithm for feature-based correspondence class extrac-
tion in chapter 4.7 and finally give an in-depth description of our implementation of the
framework, including the concept of sub-symmetry detection (chapter 4.8).

-15 -



4.1 Definitions and Notations

Qc R’ with |Q|€IN is a set of points which provides a point-sampling of the input scene.
We assume that the position of each single point x€(2 is subject to Gaussian noise and
refer to the variance of that noise by ¢ . For simplicity reasons, this parameter is global for
the whole scene. Where not denoted differently, we use 0=0.8a, throughout our experi-

ments with @, being the average point sample spacing for (2 .

We use a parameter minStructureSize IR’ to denote the minimum distance between two
points x,y€(2 at which x and y must be distinguished in a structural sense. The idea
behind this is illustrated by the following example: Let (2 be a scene containing a house
made of bricks. It is unclear then whether one wants to find symmetries on the scale of
windows, doors and the like, or on the smaller scale of individual bricks and similarly scales
objects. The minStructureSize parameter accounts for this ambiguity. If not stated differ-
ently, our examples use minStructureSize =7a,, with a, again being the average point
sample spacing for (2 .

Conceptually we consider feature points as being spherical volumetric entities in space. We
use a radius of minStructureSize for feature point spheres. As minStructureSize is a global
parameter, a feature point is fully characterized by its center point £€€(2 .

EcOx|[0,1] with (&,y:),(E,y:")EE=>y=y:' is a set of feature points together with
exactly one certainty score for each feature point. If not specified differently, = denotes the
preliminary set of feature points known at the respective time of processing, which is not
necessarily the final set of feature points that the algorithm gives as its result. In contrast

—

we use = _C (2 to denote the actual or “desired” set of feature points in a scene. While =

oo}

is usually unknown, it is helpful for theoretical considerations.

We use the notation (E, yg) for elements of =, where £€() is the center point of the
feature and y:~P(§€Z ).

We use G |0, 1]><(’|R3—>[0, 1])><29><|R>< 2101) 0 denote a specific set of feature guesses
and the letter g for elements of such set. A feature guess g is a tuple of the following data:

— a certainty value Y gE[O, 1] representing the certainty for the feature proposed by

g tobein =,
— adistribution T,: IR*—[0,1] together with a set of relevant points 7' 2 for that

distribution and a normalization factor ¢,€IR such that ¢ gz T,(x)=1. For
xel,

some point x€(2, the value ¢, T g( x) gives an approximation of the probability that

-16 -



the feature proposed by g has x as its center point. In other words: ¢, T, provides
a probability distribution over the potential positions of the guessed feature point.
Chapter 4.6 gives an in-depth explanation about feature guess distributions.

— optionally, a set of correspondence guesses K gCE X[0,1]. An element
k=(&,, ygk)e K, denotes that with a certainty of y; , the feature point proposed by

g is in correspondence to &, with respect to some symmetry in the scene.

The following kinds on functional mappings are used in the proposed framework:
— An interest function is a function
[ 2-1Q-[0,1]

It maps from (2 to a score field S:0Q—[0,1]|. Within our framework, an interest
function provides for each point a probability of being a feature point, based on local
criteria.

— A propagation function is a function

02x/0,1 0,1]x[R3*=[0,1]]x29xIR x2*°!
f ) \ |_)2| | [0,1]
prop

It maps from a set of certainty-connoted feature points to a set of feature guesses.

The idea behind propagation functions is to first perform a feature-based analysis of
the scene's structure, and then derive from the structural information a number of
guesses about where feature points could be located.

— A selection function is a function
f501: [QH[O’I])_)2~Q><\0,H

It selects a set 5 2X|[0,1]| of feature points and per-feature certainty values based
on evidence from a score field.

— A combiner function is a function

f _2QH[0,1]><2[0, 1X[IR*=]0,1]/x29x R x25x(01 50— [0, 1]

comb *

It combines a set of score fields and a set of feature guesses into a unified score field.

Details about how the different function types are used can be found in chapter 4.3. Details
about specific examples of such functions and their implementations can be found in the
respective parts of chapter 4.8.

-17 -



4.2 Basic ldea of our Framework

Our framework directly addresses problems from both class one (noisy point data) and class
two (missing local feature evidence due to local structural problems). Please refer to
chapter 3.2 for an explanation of these problem classes.

Addressing these problems first of all

requires knowledge about symmetries
in the scene. With such knowledge, an Symmetry Detection @

arbitrary set of feature points can be

easily converted to a valid set of
symmetry features. Without knowl- v
edge about the scene's symmetry <
structure, asking for a valid set of

symmetry features is meaningless on p
the other hand. While utilizing a set of
symmetry features provides a good

way to perform the required symmetry

Feature Extraction <:£|
analysis efficiently, local evidence

alone might not lead to a complete set  Figure 6: Dependencies in the extraction of
of symmetry features due to the prob-  symmetry features

lems described above. This leads to a

circular problem (compare figure 6): In order to get a set of symmetry features, we need
information about the scene's global symmetry structure. But in order to get such informa-
tion efficiently, we need a valid set of symmetry features first.

For explanatory simplicity, we in this paragraph consider the set of feature points obtainable
by local criteria as being a subset of all symmetry features in the scene. One can alterna-
tively consider it a superset (requiring removing points in order to get symmetry features) or
neither of both (allowing to both add and remove points from the set along the way towards a
set of symmetry features). Assuming that we have a way to extract at least a subset of all
partial symmetries in the scene even though local evidence might be insufficient in some
instances, we can first extract those partial symmetries, and then utilize the transformation
functions of these symmetries to translate feature points which are part of one instance to
all other instances of the symmetry. By doing so, the set of feature points gets completed
such that it becomes a set of symmetry features with respect to the partial symmetries
detected so far. As not all symmetries might have been found due to incomplete local
evidence, the fact that we now have gained additional knowledge about the scene in the form
of new feature points, suggests an iterative approach. After completing the set of feature
points to a set of symmetry features with respect to the partial symmetries found so far, the
symmetry structure of the scene can be analyzed again. After that, the set of feature points
can be further completed with respect to the more complete set of symmetries.

-18 -



4.3 Pipeline Overview

The pipeline of our framework works by first retrieving an initial set of feature points based
on local criteria. Then the symmetry structure of the scene is analyzed based on these
preliminary feature points and the knowledge about global symmetries is used to improve
the set of feature points. Using the improved set of features, symmetry analysis is repeated
to achieve even further improvement of the feature set.

Figure 7 illustrates the proposed framework's pipeline together with an example for interme-
diate results at the different processing steps.

| [orssrs s s a sy Point Cloud

4

Interest Function

\

Interest Function

Combiner Function

\

Selection Function

it

'V‘

.(‘;"Z}\; " E N EEEEEEEEENEER
QY

Figure 7: Symmetry feature extraction pipeline with examples for intermediate results

The following specific steps are taken within the pipeline:
1. We start with some input data (Qc|R®

2. Applying a set of interest functions [, ..., /i, on 2 results in a number of
score fields S,,...,S,:Q2—|0,1] . Each score field tells us for each point the approxi-
mate probability that this point constitutes the center of a feature point, with respect
to the respective kind of interest.

3. Before we can select a number of discrete preliminary feature points, the set of scores
fields has to be combined into unified per-point scores. This is done by applying a

combiner function f_,, . By doing so, we get a new score field

5= feoms || S-S, B

nj’

-19-



4. Using a selection function [, we can now select a first set of interest-based feature
pOil’ltS E= fsel(S)

5. The preliminary set of features Z allows us to efficiently analyze the scene's global
structure. We use the resulting understanding of the scene's structure to gain addi-
tional knowledge about where feature points could be located. A set of propagation
functions /010 S ppm €ach gives us a set of feature guesses
Glzfpmpvl(E), ...,Gm:fpmp,m(E) . We derive new sets G,’,..,G," by first
applying feature guess merging (see chapter 4.5.2) on each of the sets G,,...,G,,
independently and then adjusting the certainties Yy, of each resulting (merged)
feature guess g by multiplication with the applicability score (see chapter 4.4) of the
corresponding propagation function. Finally we calculate G=G,'U..UG, " and
perform a second pass of feature guess merging on the unified set G to obtain a set
G ' of feature guesses.

6. G' provides us with new knowledge about the positions of potential feature points.
To make wuse of this knowledge we derive an updated score field
S=F comb ([Sl yeees S,J ,G'| and repeat the process from step 4 on. We break out of the

loop as soon as either no additional feature points are found anymore or a config-
urable limit on the number of iterations is reached.

-920 -



4.4 Propagation Function Applicability Analysis

The applicability of a certain propagation function can differ from scene to scene. For
example a propagation function which operates on rigid symmetries might not work well for
a strongly deformed object while at the same time being well suited for others. Other scenes
may contain a mixture of different classes of symmetries and work best with a combination
of multiple propagation functions.

Our framework supports the usage of multiple propagation functions simultaneously. To
make this more robust, we allow to weight each propagation functions' influence. As the
optimal weighting scores are different for each scene, we perform an automated applicability
analysis for each propagation function to derive a weighting factor. With this applicability
analysis, propagation functions which provide feature guesses that match the features we
already know due to interest well, receive a stronger weighting than those which do not fit
the scene's interest features as well.

The assumption behind the analysis is that most of the designated features can be found
from interest alone and only a minor number of feature points has to be completed by propa-
gation. Based on this assumption, we will derive an expected probability value
E (P(E . Em)) (detailed explanation follows) for each propagation function. For any feature
guess g€G (with G being the set of feature guesses generated by the respective propaga-
tion function), EgEQ in this value denotes the feature point predicted by the guess.
= < ) is the (unknown) set of actual or “desired” symmetry features in the scene. The
value E (P(Ege Z,)) allows us to estimate the relative certainty at which a randomly
picked guess describes an actual feature within the given scene. Specifically, we apply a
corrective factor to the certainties y, of all guesses g€ (G given by a specific propagation
function (after merging) in the form that we assign new certainties y,'=FE \P(E EE m)]yg
(saying: the feature proposed by the guess is an actual feature and the specific guess is
valid).

How can we derive E|P (Ege E@)) ?

Let =, 2 be the set of feature points detected by interest-based selection and &, €(2 and
E,c as defined above. For the moment, we pick a single guess g€G for explanatory
reasons. An applicability value that takes the whole set G into account follows later. Please
note that in this chapter we consider =, and Z,, without per-point certainty scores, which
is in contrast to our usual definition. However we assign stochastic properties to those sets:

We assume that for any given £€(2, the questions whether £=¢,, £€5, and £€Z,

can only be answered with specific certainties P (EZEg) (such that ng P(g:gg) = 1),
P(£€Z,) and P(E€E,,) respectively.

-21 -



We first distinguish two disjoint cases for P (€2 ) :
P(EEE:@) = P(EEEmt)P(EEEw‘EEEmt) + P(Eggmt)P(EEEw‘ggEmt)

For practical application, we approximate P(§€Z,|E€E, ) and P(EE€EE,|EEE,,) by
constants. We use P(E€Z,|E€Z,)=0.95 and P(E€Z, |EEE,,)=0.05 for all examples
in this thesis. The fact that we can choose P(E€E,|EZE,,) as low as we do is due to our
assumption of an “almost complete” interest based feature set. The term P(E€Z |E€Z, )

on the other hand accounts for the chance that a feature which is indicated by local interest
might still not be a desirable actual feature point.

So far, we have considered P(£€Z,) for a specific point & . The guess g however does
only specify the exact location of &, in the form of a probability distribution (namely T,).

Therefore we have to consider all potential positions of &, :

P(g,€5,)=), P(E=g,)P(E€E,)

Een

To get the overall estimated value £ (P(E <€ Ew)) , consider the following:

We pick a random guess g€ G with

P(g being picked):—yg—
z Yg’
g'eG
This introduces a weighting which is linear in the certainty of the guesses. We use this
weighting to enforce a higher influence of high-certainty feature guesses on the final appli-

cability score compared to low-certainty feature guesses. Over this weighted “picking
scheme”, we estimate the expected value

E|P(E,€5,)|= Z P(g being picked) P(§,=E,)

geiG

which provides our applicability metric. The values of which are in the range

-9292 -



Implementation Details

Given a propagation function f and a set of certainty-annotated interest-based feature

prop >
points =, ©2X[0,1] (as in our original definition for sets = from chapter 4.1):

1. Generate an “overlay” mapping Ogmig—’[O, 1] , initialized to zero everywhere, by

doing the following for each feature point (&,y:)€EZ,
Derive an updated mapping
0z 10Q2-10,1]
with

03'Uﬁ:l—“—vi(xﬂhfqg)ﬁrdleSNHx—E%ﬂmmﬁnwmmﬁﬁe

int

'(x)=05 (x) everywhere else.

nt int

Then continue with the next feature point using the updated mapping 05““'

instead of 0 .

Each value Oslm(x) of the generated mapping provides an estimation for

P(x€Z,,) . Please note that we assign equal values P(E€E, ) for all £E€
within minStructureSize radius around some interest-based feature's center
point in this implementation.

The resulting mapping Oz provides a representation for PESE int> with
P(EEEim)ZOEW(E) forany £€() .

2. Retrieve a set of feature guesses G p=f pmp(E im) , apply feature guess merging (see

chapter 4.5.2 for details) which results in a new set of feature guesses G

3. For each guess g€G with certainty Y,, distribution T, with a discretization

factor ¢, and a set of relevant points T ¢ » calculate the sum
geT,
with
P(EEEOO) = Eint(E)P<§€Eacz|EeEim) + [rl_Eint(g))P<§eEact|§¢Eint)

where =, (&) is to be understood such that =, (£)=x<(&, x|€E, .

—int

The overall applicability score for [ is then given by

D V. D ¢, T E)P(EEE,)

g€l EETg
2 Ve

geCG

prop

-93-




4.5 Feature Guess Data Representation Methods

Both propagation functions and interest functions produce a set of guesses about where
feature points may be located. While interest functions do so on a local per-data-point
evidence basis, propagation functions have a more “global view” on the scene and can provide
additional contextual information. Specifically, propagation functions derive their guesses
based on the given set of preliminary feature data and therefore explicitly utilize dependen -
cies between local feature probabilities. This global dependency information usually contains
hints about where point to point symmetry correspondences exist.

Depending on the representation of the produced guesses for feature locations, a different
degree of such contextual information is preserved for further processing. We describe two
alternative guess representations in the following sections and then introduce a hybrid
approach, which combines the benefits of both.

4.5.1 Implicit Guess Representation

The idea for an implicit guess representation is to operate on a score field F:Q —[0,1] and
to incorporate the information of any single feature guess g into F/ as soon as possible.
Whenever a guess for another feature is generated, an altered mapping F':Q2—R is
derived to represent the guess. For example when considering a feature guess g with a

distribution T, and a distribution normalization factor of ¢, , we might use
F'(x)=1—=(1=F(x)|[1=c,7,(x)]

as a straight-forward implementation of this approach. This equation says: x is a feature
exactly if it was a feature based on the information we had available before or based on the
new evidence provided by g.

Such an implicit representation clearly has computational advantages, as the total amount
of data does not increase while incorporating additional guesses. Also, this representation
allows for a straight-forward selection of feature points, as it explicitly provides scores for
each point and therefore contains all information we need to decide which points to select as
features.

However there are problems with this kind of representation. Obviously, using it makes us
lose any information about how a certain score value F (x) was composed. It therefore lacks
context and information about stochastic dependencies and relation among point scores.
Such information is however required for feature guess merging — which we describe below —
and feature-to-feature correspondence extraction (compare chapters 4.5.2 and 4.6 respec-
tively). An approach to solve this problem is to build an incidental mapping which maps to
each point the corresponding contextual information. However this is not practical. As each
feature guess can affect a large number of points, contextual information has to be dupli-
cated across a large number of points. Still each point can be affected differently by a
different set of guesses, which eliminates the possibility of sharing contextual information
across points in order to eliminate the need for data duplication. Therefore, the incidental

mapping can easily happen to reach memory requirements in @ (|Q|2) .

-24 -



4.5.2 Explicit Guess Representation

An alternative approach is to represent all feature guesses explicitly, as a set of feature
guesses like defined in chapter 4.1.

Additional contextual information can be easily added to that data structure. For example
we can store correspondences as a set of pairs (&,y:)€QX|[0,1| with y; denoting the
certainty that & is in correspondence to the feature proposed by the feature guess. We call
this correspondence set K <ZX[0,1| and its elements k€K .

The explicit guess representation has the potential disadvantage of typically requiring more
memory than an implicit one, with memory requirements being linear in the number of
feature guesses instead of points in the scene. Whether this is actually a problem or not
depends on the propagation functions used. Propagation functions should take care of
limiting the number of resulting feature guesses with this representation.

An explicit guess representation also has a major computational disadvantage when one
wants to retrieve per-point scores for use in the selection function. As there is no direct
mapping from points to scores, retrieving a score value requires to walk over all feature
guesses and combining the values of their distributions at the given point. Even though it is
often possible in practice to pre-select a subset of guesses that have significant influence on
a given point's score, this process is still costly when compared to the implicit representation.

Feature Guess Merging

In order to model a limited amount of dependency within a set of feature guesses, it is
helpful to know which feature guesses describe one and the same feature point and which
describe different ones. In practice it has turned out that to obtain useful information about
the location of features from a large number of feature guesses actually requires modeling
this kind of stochastic inter-guess dependency.

To understand why this is important, consider the following simplified example: Consider a
set of five feature guesses with equal certainties of y,,...,¥s=0.5 and having equal distri-
butions T,,...,Ts which assign feature probabilities of 0.05 to a total of twenty different
points Xx,,...,xX,)€(2 and a probability of 0 to all other points. Thinking of all feature
guesses as describing different point features and also being otherwise independent, it is
logical to assume to any point x&() a probability for being a feature point of

5
1—1_[__1 {1— yi'rl.(x)] , as x is a feature as soon as any of the feature guesses is both true

and says there is a feature at x . For x,...,x,,, this leads to a certainty of

1—

-

(1-0.05y,]=1-0.975°~0.12

i=1

Considering all five feature guesses as describing the same feature, the resulting probability
for these points is

0.05

5
1- [L—%0:00ﬂ1—05ﬂ~005
=1

i

-95 -



which is less than half the probability of the independent variant. Having five or more sepa-
rate feature guesses for a single feature point is common with our currently implemented
propagation function.

Being able to perform explicit feature guess merging is a crucial advantage of an explicit
feature guess representation. As there is no information left about the underlying structure
of the score field in the implicit representation case, an explicit guess merging is not possible
there and can at best be approximated by some local per-point score operator with accord-
ingly reduced precision.

We implement feature guess merging by performing the following main steps:

1. Approximate the distributions T, of feature guesses by a sphere with discrete center

points 7, .

2. Merge together feature guesses where the corresponding center points 71, are suffi-
ciently close to each other. We also check that at least a part of the assigned corre-
sponding feature points matches between merging candidates as an additional
merging criteria.

Complete implementation details and a discussion of our implementation's limitations
follow:

- 926 -



Implementation Details

Given a set of feature guesses G :

1.
2.

Initialize a three dimensional KD-tree ¢

For each guess g€ G with a distribution T

¢ » a set of relevantly affected points T -

a certainty of y, and attached correspondence information K -

1.

2.

Choose a point 7,E7, with Tg(mg)zmaxw"rg(xﬂxETg}

Validate that taking a circle of radius 3 o with center m ¢ glves an appropriate

approximation of T, . More exactly, check that the ratio

g
&

T, (x)

xeT;NxfnuH<3U

2, Tlx)

x€T,

is greater than some value, (0.5 in our experiments.

If the described circle gives an appropriate approximation (see previous step):

1.

Use the KD-tree ¢ to preselect a set of candidate feature guesses to merge g
with, by finding entries g '€¢ with Hm —mgHm< minStructureSize

While using the maximum norm favors some directions in space above others,
it allows for fast candidate retrieval directly from the KD-tree. Optionally,
post filtering of the results using the Euclidean norm can be performed.

For each such candidate g’ with a certainty of ), and correspondence

information K o> assess the “average correspondence” with g by calculating

YeYe

whenever (§,y. )€K, ., 0 otherwise
ygyg' ‘

Z&Z&J

(&, y:)EK, Y (&' ye)EK, ¥Yqr

(&, yE)EKg

min

Then pick the candidate with the best correspondence score. Optionally
continue at step 2.5 — no candidate g ' exists — if the average correspondence
is below some threshold for all candidates.

Alternatively: simply pick the candidate g’ with the smallest distance
Hmé—méH (replaces step 2.3.3).

Choose the candidate g’ that has the highest correspondence matching
score

Merge g into this candidate (see below)

If no candidate g’ exists, insert g into ¢

-97-




Implementation Details (cont.)

4. If described circle does not gives a reasonable approximation:

5. As we cannot easily get reliable information about how to merge such a guess,
reduce its certainty to Yy g>|<0.05 (or by some other constant). See below for

discussion
6. Add g tothe result set

3. Add all feature guesses now in ¢ to the result set

Merging together two feature guesses works as follows:
Given two feature guesses g,,g,, derive a merged feature guess g, :

1. Set the distribution T, and the corresponding set of relevant points 7', of g, toa
merged distribution (see chapter 4.6.5) using the distributions from g, and g, as
sub-distributions

2. Set the certainty Yy, of g, to 1—(1—y,)(1—y,), meaning g, is an applicable

guess whenever g, and/or g, are applicable

3. If correspondence information is available, consider correspondences KEK UK, .
For each such k=(&,y;) check that —3y. , suchthat (§,y, )€K, . If that
condition is met, distinguish three cases:

1. Ty, suchthat (§,y, )€K, ATy, , suchthat (§,y,,)EK,:
add to K, the correspondence (£, 1—(1—y. )(1—y,,)|

2. Ty, suchthat (£,y, )€K, A~(Ty,, suchthat (£,y, ,)EK,|:
addto K, the correspondence &,y |

3. 3y, suchthat (£,y, )€K, |ATy, , suchthat (£, y, ,)EK,:

add to K, the correspondence [E 3/_5,2\,)

While this feature guess merging algorithm works well in practice and has good perfor-
mance, it has two disadvantages, which should be considered:

1. The order in which feature guesses are inserted into the KD-tree ¢ is arbitrary. This
order can is potentially relevant for the question whether two guesses get merged or
not. As an example, consider feature guesses g,,g,, £; with max-points

mlz(O,O,O),WZz:(l,O,O),m3:<_1,0,0)

-98 -




Implementation Details (cont.)

Using for example minStructureSize=1.5, inserting in the order of g,,%,,4;
leads to exactly g£,,g, being merged, while inserting g,,g,,g; leads to all
Z2,.8,, 2, being merged together, as both 7, and m, fit into a minStructureSize
radius around #,. The proposed “average correspondence” score also is not

invariant over different merge-orders.

The handling of guesses g with distributions not approximately representable by a

circle of radius 3 o around m ¢ 1s largely arbitrary.

The rationale behind ignoring those guesses and simply “punish” them by reducing
their certainty by a constant factor is that those guesses do not give well constrained
predictions anyway, but usually have a high amount of uncertainty in the associated
distribution T,. Lowering their certainty reduces their impact on feature point
selection and makes up for the potentially too high per-point feature scores that can
arise by not merging a set of feature guesses , although they actually predict one and
the same feature point.

The exact factor of certainty decrease is however chosen such that works well with
the current propagation and combination functions on the tested scenes only.
Different functions and/or scenes might require different factors.

-99 -




4.5.3 Hybrid Approach

In order to combine the advantages of low information loss as with the explicit representa-
tion with the advantage of fast per-point score feature selection, a hybrid approach can be
taken. The idea is to take an explicit feature guess representation and to materialize its
projection to a point-scores domain as with the implicit representation.

In order to perform a projection to per-point scores, the information of the explicit set of
feature guesses must be “combined” to get a score function F:(—[0,1]. We use a score
range between zero and one to loosely resemble probabilistic per-point scores, where for some
point x €2, the value F (x) approximately represents the probability that x is a feature

point. Please note that we usually do not have Z F(x)=1, as there can be multiple

x€N
feature points in the scene. F' therefore does not provide an overall probabilistic distribution
with respect to feature positions. The probabilistic property is given for individual values
F(x) only.

The actual combination of guesses into such a score field is handled by a combiner function
(details follow in chapter 4.8.2). With our combiner functions, the computational complexity
of the combination process is linear in the number of feature guesses times the number of
points affected by each feature guess (as given by 7 , for some guess g).

One important question remains: Assuming that we have selected some point feature £€2
based on the score field. How can we go back to a set of feature guesses? More specifically:
how can we find out which feature guesses participated (how much) to the set of per-point
scores which led to the selection of & ?

To tackle this problem, we can first utilize the sphere character of a feature point & to
derive a set of points

P= [)CE.Q | Hx—§||<minStructureSize]

which conceptually belong to the feature. Then, we can walk over the set of feature guesses
G and for each g€G with a certainty Y, , a distribution T, and a distribution normaliza-

tion factor ¢, , calculate its “involvement” in & :
lé’:yé'cé'z Té'(x)
X €EP

What we get is a set [ ECGX[O, 1| of feature guesses and their “involvement” in £ . The
computational complexity for this is linear in the number of feature guesses, as well as in the
size of P.

In all following parts, we assume a hybrid feature guess representation.

-30 -



4.6 Feature Guess Distributions

A feature guess distribution T,: R’ —0,1] for some feature guess g specifies a probability
density over |R’, telling how probable it is for the feature point proposed by g to be located
within different (volumetric) areas. For performance reasons, we additionally use a set
T gCQ which contains only points from (2 which T, is relevant for. If no reasonable

choice for such subset exists, we assume 7 gZ.Q .

4.6.1 Discretizing a Continuous Distribution

Feature guess distributions provide a probability density over |R’. However, our framework
operates on a finite subset ()—|R’. In order to apply a feature guess distribution T to Q,
it is necessary to discretize the distribution, while maintaining the property Z o T(x)=1.

Conceptually this involves two things:

1. Limiting the image of T from |R® to the manifold described by (2, as we assume
that feature points can only lie on the surface and not at arbitrary positions in space.

2. Discretizing the resulting continuous surface distribution to the points in (2 .

Mathematically, this process can be described as follows: We assume that any point x&(2
implicitly describes a contiguous surface patch X XCIR3 . Then we must find a factor c€R
such that

cz _f T(x")dx'=1

XEQ x'eX,

We can then assign to any point x € (2 a probability of

c f T(x")dx'

x'eX,

In practice, this way of calculation gives rise to various problems however. First, we cannot
easily determine a patch X, exactly. Second, calculating the integral over a distribution
function is usually non-trivial. Especially for the case of Gaussian distributions, no analyt-
ical solution for such an integral exists in the general case. Even for simple distributions, the
potentially non-uniform appearance of X, would make calculating the integral complicated.
Therefore, we apply two simplifications:

1. We estimate f{,ex T(x")dx' by area(X )*T(x). As long as (2 samples the

surface densely compared to the standard deviation of the distribution, this provides
a feasible approximation for most types of practical distributions.

-31-



2. Instead of calculating X, and therefore area(X x>:fx’ex dx' exactly, we assume a

uniform sampling of the surface. In other words: area(X.) is (approximately) the
same for each x€() . In practice, most distributions are locally constrained, meaning
that a comparably small subset of points 7' () accounts for most of the sum

z 0 T(x) . With this, we can lower our assumption of a globally uniform sampling

to assuming only a “locally” uniform sampling over 7.

Applying both simplifications, the constant ¢ can now be numerically calculated as

2. (%)

xeN

-1

c=

Sacrificing some additional precision, the number of calculations to perform can be further
lowered by summing over just the set 7c(2 .

In the following part, we describe a number of different distributions that we are using
within our implementation.

4.6.2 Gaussian Dot Distribution

The Gaussian dot distribution describes the probabilities

for all possible positions of a single point in space, given an

estimated position, under the assumption that the deriva-

tion from the estimated position is normally distributed and

uniform for each direction in space (i.e. no direction is .
“favored” by the estimation error over another direction). As

long as the underlying sources of the error in estimating the

point position are not known, assuming a normal distribu-

tion is reasonable, as it describes the case of summing over

an infinite number of pairwise-independent sources of error

(central limit theorem). Figure 8: Gaussian dot

Given the point position estimation (“center”) c€R’ and distribution (2D case)

the variance for the distribution ¢, the Gaussian dot

distribution is given by a multivariate Gaussian function:
—|x—clf -1

3
20° 2

T(x)=e (20° )

As a property of the normal distribution, the actual point lies within 2 o of the estimation
with more than 95% certainty. Therefore a — for our requirements — reasonable set 7 (2
for the Gaussian dot distribution is

T={xeQ||x—c|<20}

-392-



4.6.3 Gaussian Radius Sphere Distribution

With our current implementation of the propagation func-
tion, information about the position of a feature guess is
known in the form of a certain distance from another refer-
ence point. Both the exact distance as well as the position of
the reference point however are known up to some certainty
only. The Gaussian radius sphere distribution describes this
by modeling the distribution for a normally distributed
distance from a reference point with a normally distributed

error in its position. As both sources of errors behave
equally in each spatial direction and are both normally
distributed, the uncertainty in the position of the reference

i b ) b ] - Figure 9: Gaussian radius
pf)lnt can be 'seen .as just an‘01‘3 er‘uncertalnty in the sphere distribution (2D case)
distance from its estimated position, in other words: as a
summation of two random variables. The variance of the

combined error is simply the sum of the radius and the point position variance.

Formally, the desired distribution can be obtained by convolving the surface of a sphere (for
the 3D case) with Gaussian dot distributions and multiplication with some scaling factor in
order to normalize the distribution's integral to one. For our needs, a simpler approach is
feasible. For some reference point c€R’, an estimated distance »*=IR and a combined
error variance ¢, we describe the Gaussian radius sphere distribution by the term

{lx=cll-r) 1 -1

r(x)=e 2 |20¢’n)4ns’

This term describes a normal distribution over ||x —c||—7 normalized by the surface area
417 7” of a sphere.

Intuitively speaking, there are two errors that this simplification implies:

1. Towards the center of the sphere it gives a smaller probability than would be
achieved by the convolution of Gaussian dot distributions, while for the outside of the
sphere (for ||x —c|[>7), the values given are too high. What one would expect when
integrating over the inside and outside volume of the sphere defined by the center
point ¢ and the radius r is an equal share of probability for the actual point to be
inside as well as outside of it. However the given simplification does not correctly
parametrize over the volume, but instead represents a parametrization over the
radials from the estimated center point.

2. Around the center of the sphere, the values given by T are smaller than expected
also due to another principal error: the normal distribution over ||x—c|[—7 gets

truncated at ||x —cH: 0 with our simplification

-33 -



Due to these errors, an integral value J'IR‘ T(x)dx<1 1is to be expected. While this normal-

ization problem is neutralized by the renormalization that we perform when discretizing the
distribution to (2 (see above), the relative error in the distribution remains. With the esti-
mated distance r being sufficiently large compared to the combined standard deviation o,
this error is minor however.

As with the Gaussian dot distribution, we can additionally cut of points that receive a cumu-
lated probability of less than 5 % by using

T={xeQ|-20<|x—c||-r<20}

-34-



4.6.4 Multiplicative Distribution

The multiplicative distribution models the case where
multiple sub-distributions are to be overlayed in a logical
and fashion. Given a set of sub-distributions T,,...,T,, the

> no

corresponding multiplicative distribution is given by
t(x)=]]7(x)
i=1

As 1,(x)<1V1<i<n,x€R’, it is fxe|R3T(x)dX<1 in

most cases. The multiplicative distribution is therefore not
strictly a continuous probability distribution. As with the
simplified Gaussian radius distribution, the discretization
step however eliminates this problem.

Given sets 7, ...,T,=(2 for the sub-distributions, we use

to restrict calculations to significant points only.

4.6.5 Merged Distribution

The merged distribution represents the combination of two
sub-distributions which are assumed to describe the same
feature point.

To see why we implement this distribution the way we do,

first consider a set of sub-distributions T,,..., T, instead of

just a pair of sub-distributions. Considering T,,...,T, as
describing the same actual feature point, a multiplicative
distribution would be the first choice to represent the joint
probabilistic feature position distribution, as all sub-distri-
butions have to agree on a specific feature position.
However, just one single error in the decision whether two
distributions describe the same feature or not can effec-
tively destroy such a multiplicative distribution numerically
as well as semantically. For example consider the extreme

Figure 10: Multiplicative
distribution (2D case, white);
Two Gaussian radius sphere
sub-distributions (yellow)
shown here for better under-
standing

Figure 11: Merged distribu-
tion (2D case); Two Gaussian
radius sub-distributions

case of two distributions following an approximate Dirac Delta function. Erroneously

merging those functions multiplicatively results in an ill-defined distribution. The same

problem exist in a less dramatic but still relevant way for most practical distributions,
making a meaningful discretization of the resulting distribution numerically impossible.

In theory, this problem can be accounted for by explicitly handling the case of an erroneous

merging. For example for two sub-distributions T,, T, one could calculate a joint distribu-

tion as a combination of two disjunct cases:

-35 -



1. With a probability of £€[0,1], T,, T, were merged correctly. In this case we use a

multiplicative distribution with values v T,(x)T,(x) for any point x€IR®, where v

is a normalization factor which satisfies Uf e T1(x) T (x)=1

2. With a probability of 1—€, T,,T, were merged incorrectly. In this case we derive
values for our distribution by giving probability values which describe a logical or
operation: 1—(1—7,(x))(1—7,(x))

Combining both cases results in
T(x)=e0T,(x)T,(x)+1—¢|[1-(1 —T,(x))(l—'rz(x)))

n—1

While this works for just two merged distributions, it requires to consider all of the 2
possible combinations of correct and erroneous merges when considering n sub-distributions.

A more efficient alternative is to implicitly model in the possibility of an error. Consider a
distribution which merges two sub-distributions T,,T,. The idea is to establish a “base
certainty level” for each distribution, in order to reduce the damage that results from erro-
neous merging. Let Y,,Y, be the certainties of the feature guesses that T, and T, belong
to. Let ¢ be the certainty that the merging decision was correct (we use a constant value of
0.8 for & in our experiments). For each of the two sub-distributions, we distinguish
between the case that both the corresponding feature guess and the merging are correct, and
the case that either one is not. This leads to certainty values of y,eT,(x) + 1—y, ¢ and
Y,ET,(x) + 1=y, ¢ respectively. Multiplying those values yields
(y,et,(x)+1=y,e)(y,eT,(x)+1—y,e). These values unfortunately have the problem
that we get

_[ (YlETl(x>+1_Y15)(3’zETz(x)+1_}/zf)dx = f (1_3/15)(1_3/25)5135 = ®
x€R? x€R?

As a fix for this issue, we limit the value at any point x to the larger one of T,(x), T,(x).
This finally gives the overall formula for the merged distribution:

T(x):min{max‘t'rl(x), T, (%)), (y e, (x)+1—-y, s)(yzs'rz(xH—l—yzs)}

To generalize from the case of two sub-distributions to the general case of n sub-distribu-
tions, the pairwise merged distribution can be applied recursively.

We use

T=T,UT,

for limiting calculations to relevant points only.

-36 -



4.7 Feature-to-Feature Correspondence Extraction

Feature guesses may carry information about the

underlying feature-to-feature correspondences. Yo 2,
This information can be used to extract a set of b4 . ; y %
feature correspondence classes. Such correspon- s 3 °ﬂ°
dence classes can be used as a starting point for > N
the extraction of symmetries in (2 for example.

Figure 12 shows an example of extracted corre- :oa :;o
spondence classes. - o’ .
Given a set of feature-to-feature correspondence q’s - ,: O/‘/
certainties = XZ —[0,1], extracting correspon- °
dence classes can be formulated as a graph

problem. The idea is to identify connected compo- Figure 12: Feature correspondences;

nents in a graph over all feature points, where Large spheres denote corresponding

two feature points are connected exactly if they features, one color (including white) per

are in correspondence to each other. The €O espondence class
following gives an algorithm to perform corre-

spondence class extraction:

1. Build a weighted undirected completely connected graph G, with one node per
feature point. Initially, all edge weights are one. The weight of an edge ¢ between
two features &,,&, in G represents the certainty that &,,&, are not in correspon-
dence to each other.

2. For each feature point £€Z :

1. Retrieve the set of underlying feature guesses [ ECGX[O, 1| as described in
chapter 4.5.3

2. For each pair (g,i g) €/; (where g is one of the underlying guesses and I . tells
how strong g's influence in the selection of & was), consider the set of corre-
spondences K ;- For each K :<§K:Y§,:)€K ¢, update the weight of the edge
between & and &, by multiplying its current weight with 1—ig Y& . Semanti-
cally this means that two features &, and & are not correspondent exactly if
they were not corresponding before and they are not corresponding according to
the new evidence provided by « .

3. Extract an unweighted undirected auxiliary graph G’ with one node per feature
point and an edge between two features &,,&, whenever the weight of the corre-
sponding edge in G is below one minus some certainty threshold. In all examples,
we use a certainty threshold of 0.3 .

4. Using G', extract connected components. Each component provides a correspon-
dence class.

-37 -



4.8 Instances of Framework Functions and their Implementation

In this part, we present concrete instances for interest, combiner, selection and propagation
functions as well as information about our implementation of those functions.

We implemented the framework in C++ within the XGRT
(http://www.gris.uni-tuebingen.de/xgrt) toolkit. XGRT provides data structures and basic
algorithms to work on three dimensional point clouds efficiently. It also provides rendering
facilities and tools for interactive point cloud editing. We utilize the provided data structures
of XGRT for operating on point clouds and plug into XGRT's user interface. The user inter-
face itself is based on the Nokia Qt toolkit, which enables compilation on a range of different
platforms.

|3 altes rathaus prepared for IPSFX cutted other side downsampied

File Edit View Edras Help

XGRT Tools and Commands
% Fiscene | SfToos | Ficmes | @) REEE]
View IPSFX - w| (R

Cfﬁ 51 xgrt st

Basic Sciiings
T The following parameters have been derived automatically:
minimal structure size: 0.0238719 pointCloudPaih root/pcl

Eﬁ& 3 point position sigma: 000272822

Foun i Use auto-tuned parameters instead of manual ones? minSiuctueSize (0,03

@J‘y Cancel pointPosiionSigna 0,005
Move
cam sippagelrterestWei |1
cunvaturelntersstWs |0
combinerFunctionSt | mulipicative nterest -
selectionfunciionSe | probabilsic localinfuence |
e coloizePoints
sePropagation ) usePropagation
rlethl 4
minNletSupport 3
probabiltyThreshold (0.5
! maxkerations
stathddOnlyAfterte 4
comespondenceTh 0.3
Bxecute
Stat(0  |SEndis0 |5 Stepi1 |5 Tme: 19 3 3 ¥4 P FPSI20 | 3| workon]allframes |~

Res: 1237 x754

Figure 13: XGRT user interface

All tests and experiments have been performed on multi-core 64 bit AMD64 systems running
Microsoft Windows XP or Windows 7. Exact timings for a specific hardware environment are
given in chapter 5. The XGRT toolkit as well as the framework and function implementa-
tions have been compiled using the Microsoft Visual C++ 2008 compiler.

-38 -


http://www.gris.uni-tuebingen.de/xgrt

4.8.1 Interest Functions

Given the point cloud (Q—|R®, an interest function

gives a functional mapping S:Q—[0,1|. For
some point xE€(2 the value S(x) should be

loosely interpretable as the probability that x isa ~  [!feestfunctonj =
feature point, when judging from the specific

interest information solely. |

Combiner Function |

For the demonstration of our framework, we have

implemented two different interest functions, St R

which use different local criteria to produce S'. A

First we give an overview over slippage analysis as <v>
points

proposed in [Gelfand et al., 2008] and describe a P v Q
slippage-based interest function. Secondly, we  \Nwwwwowm......
introduce an interest function which uses interest

based on Gaussian curvature. Figure 14: Interest function

Slippage Interest Function

Slippage analysis states the problem of how well the alignment of some local piece of geom-
etry to itself is constrained. Mathematically this works by considering a quadratic least
squares energy function. The Eigenvectors with zero-Eigenvalues (in practice: near-zero
Eigenvalues) of the Hessian of this function then describe motions, which can be performed
without increasing the value of the energy function on an infinitesimal scale. In other words,
a local alignment of the patch to itself is not constrained in this direction. Such a motion is
called a “slippable motion”. Figure 15 illustrates the intuitive meaning of slippable transla-
tions.

/[

O O ”
I_/:@_/ faWa 4 _

—

No slippable Slippable to the Slippable in two
translations “right” translational dimensions

Figure 15: Intuition for slippable motions: considering a point in the orange circle, some
translations (red) are well constrained by the point’s local environment, others less so (green)

Given some point, local slippage analysis is performed by first building a quadratic energy
function over a neighborhood, where the energy function describes how well the point's
neighborhood aligns to itself under different transformations. The influence of points in the
neighborhood is weighted by a Gaussian function. Then, an Eigenvector decomposition of

-39 -



the corresponding Hessian matrix is performed. We use an existing implementation from
[Bokeloh et al. 2008] for performing slippage analysis, which is based on [Gelfand et al.
2008]. For the Gaussian neighborhood weighting, we use a standard deviation of
o=0.5*xminStructureSize . Using the ratio between the smallest and largest eigenvalue of
the Hessian gives a non-slippability score, where a value near zero indicates slippability in
at least on direction (rotational and/or translational) while a score value of nearly one indi-
cates a well constrained auto-alignment problem. Cases where exactly one slippable motion
exist can be detected by additionally considering the second largest eigenvalue. Figure 16
shows an example for the results of slippage analysis.

O non-slippable [ one slippable motion

Figure 16: Results of local slippage analysis (Old Hannover town hall data set)

For extracting point features, non-slippable points are most interesting obviously. However
the exact values of the described non-slippability score can vary depending on the choice of
minStructureSize , the overall structure of the scene as well as the quality of the point
sampling. To minimize the effects of different scalings, we derive a rescaled preliminary
score mapping S ':Q2 —[0,1| such that the upper percentile of points with respect to non-s-
lippability receives a score of at least 0.85 and points with below-median interest get a
score value of 0 .The mapping S’ is derived as follows:

1. We assign to each point x €(2 a non-slippability score

s =slip,(x)+0.005 slip, (x)

where slip,(x) is the ratio between the smallest and largest eigenvalue of the
Hessian and s/ip,(x) the ratio between the second smallest and largest eigenvalue.
We incorporate s/ip,(x) into the score since points with no more than a single slip-
pable motion should still receive a small amount of interest. Especially when
combining the resulting slippage-based interest values with additional evidence later
in the framework, the addition of a small fraction of s/ip,(x) helps in making
feature points “snap” to edges in the scene. The weighting factor of 0.005 has turned
out to work well with all tested data sets.

2. By sorting all scores 5., we determine the median value  as well as a lower bound

for the upper percentile of all point's non-slippability scores s, , .

- 40 -



We calculate

1

—1
_1+0.85 &
X max |0 ‘—B“
Y[ Sup|T P
3. Define
S'(x)=1— T
aomax|0,|s |— B +1

for any x €2 . Please note that this specifically results in S '(x)>0.85 for any point
with s, being in the upper percentile and S'(x)=0 for points that have s_ in the
lower half of all points.

* This formula follows from the scaling formula used in the definition of S’ in step 3, by
setting a “target score” S'(x)=0.85:

1

S'(x)=1- :
(x) (xmax{O, SX‘—BH-I
1
1+S5'(x)= /
= (x) ocmax |0,]s,|—B|+1
1 — ( _ nl
®1+S,(x>—o<maxt0,s.x Bi+1
I
1+8'(x)
max«}O,sx—B}

Formally S’ provides a feasible choice for the final interest mapping S. However it still has
a major semantic problem: For each point x€(2 the value S(x) is supposed the give
approximately P(x€Z_). The values of S must be dependent on the sampling density of
the point cloud. For instance doubling the number of sample points should effectively cut the
individual per-point probabilities for being a feature point into half, as the number of poten-
tial feature point positions is doubled. The underlying problem here is that local per-point
slippage analysis lacks a notion of discrete feature points. Specifically we would expect all
per-point scores which describe a set of possible center points for a single semantic feature
point to sum up to no more than one.

-41 -



To encounter this inherent problem of per-point scores, we rescale the score values as
follows: For each point x €2 , we calculate

c.'= Z 1
yeEQ, H y ﬂcH <minStructureSize

essentially calculating a local point density. During local slippage analysis, we used a stan-
dard deviation o=0.5minStructureSize . Depending on the value of o, a single non-slip-
pable point induces high non-slippability scores in a differently sized “area of impact”
around itself. We want to ensure that for a single non-slippable point, the overall non-slippa-
bility score is no more than one. For this reason, we sum over points within a radius of
minStructureSize for retrieving c;' , to approximately compensate for that effect. Instead
of summing over the number one, more sophisticated weighting schemes can optionally be
applied. Then, we define

S(x)=c,S"'(x)

to get the final result mapping of the slippage interest function.

Curvature Interest Function

The curvature-based interest function works just like the slippage-based interest function,
but instead of using local slippage, local point scores are derived as Gaussian curvature
values with a small part of principal curvature added. We only consider positive Gaussian
curvature, as we do not want saddle points to receive high scores. Given the two principal
curvature values K, ., K,,;,, €R , the per-point score gets calculated as

1 40.007

s . =max {0,k K,W‘

max Kmin

where the factor 0.007 — similar to the slippage case — is meant to also assign some small
score value to “edge points”. Scaling this score to probability values then works exactly as for
the slippage interest function.

For Calculating principal curvature values, we are using an existing implementation from
the XGRT framework. It works by first fitting a local PCA coordinate frame using a
Gaussian weighted neighborhood of the current point and then fitting a quadratic polyno-
mial to the points in this neighborhood. The Eigenvalues of the corresponding Hessian
matrix provide the principal curvature values. For the Gaussian weighting of the neighbor-
hood, we use 0=0.5minStructureSize .

-49 -



4.8.2 Combiner Functions

A combiner function maps from a set of feature
guesses (G and a set of interest score fields
S, ....8,:02-[0,1]| to a unified probability field
F:Q—|0,1|. F loosely specifies for each single
point in the scene, how probable it is for this point
to be a feature.

The following example gives an intuition what a
combiner function does: Let us say that a propaga-
tion function resulted in a feature guess which tells
that there is a feature point somewhere on the
surface of a sphere with radius » around a point
p€E€L . Let us further assume that we are 50%
certain that this guess is correct. Then — assuming
a uniformly sampled point cloud — the per-point
feature-probability is (.55, ' for each of the n€IN
points on the sphere's surface when judging from
this guess alone. However, we might have addi-
tional information available. Say we have a second
guess that predicts a feature somewhere on the
surface of a sphere of radius ' around another
point p'€(2 with Hp—p'H§r+r’ at a certainty
of 70%. Let n'€IN be the number of points on that
sphere's surface. The constellation of these two
feature guesses is illustrated in figure 18. With
this additional evidence for a potential feature
point, the resulting probability for points which are
on both surfaces should receive an increased
feature-probability value when comparing to the
values resulting from each of the two guesses
alone. For completely independent predictions, the
intersecting points should get a feature-probability

Point Cloud

* ______

| Combiner Function ‘

Selection Function

Figure 18: Overlapping feature guesses
(schematic). Points in the green area
should receive elevated feature-proba-
bility values.

of 1—(1 —05n" ) *( 1—-0.7n "‘) . This formula represents that a point is a feature, whenever

it is a feature with respect to at least one of the two predictions. If there is a stochastic
dependency between both probability distributions, matters can get arbitrarily complicated.

For practical reasons we assume all stochastic attributes of any two feature guesses to be

completely independent. We rely on feature guess merging to cover the case of multiple

feature guesses describing the same actual feature point (compare with chapter 4.5.2).

From these considerations, the following combiner function results:

-43 -



Given a set of feature guesses G and a set of S,,..., S, : 0Q—1[0,1], the resulting score field
F:0Q—-]0,1] is defined by

n

Flx)=1=TT(1=8,x)[T(1=c,7,(x)

i=1 geqC

for any x€(Q2.

A consequence of this approach is that we have F(x) > I—H eG(l—c(g Tg(x)) , which
g

means that feature guesses alone can result in a high combined per-point score even though
no interest-based evidence for that point is present at all. While this is necessary to recover
from errors of class two (symmetry features which lack local evidence due to structural
reasons, compare chapter 3.2) it can also result in undesired “overshooting”, as figure 19
illustrates.

Figure 19: Comparison of combiner functions: Left without interest requirement, right with
multiplicative interest

Some scenes contain only errors of class one, meaning that every symmetry feature is in
principle detectable by local criteria, but local evidence might still be too low at some of the
desired feature point's to make those points selected as features (due to noise etc.). Such
scenes allow for another combiner function that does not suffer from the “overshooting”
problem. This combiner function works by requiring at least some local evidence for any
point in order to assign a high score value to that point. This multiplicative interest combiner
function has the advantage of sticking closer to what the data provides, when compared to
the previous “plain” combiner function. We numerically implement the “at least some local
evidence” criteria by deriving a rescaled joint interest score field S':(2—|0,1]| as follows:

1

l—ﬁ[l—Si(x)) v
S'(x)= i=1

max
yEQ

1—1j(1—si<y>)

-44 -



The overall formula for the resulting score field of the multiplicative interest combiner func-
tion follows from the idea that a point is a feature point, whenever either sufficient local
interest exists, or at least some local interest exists and there is additional evidence from
feature guesses:
F(x)=1-(1-S"(x)|

1-5'(x) I—H(l—cg'rg(x))

g€l

- 45 -



4.8.3 Selection Functions

A selection function is a functional mapping

f:(Q—)[O’l])_)2Q><IO,1], Based on a score field

coming from the combiner function, it gives a
discrete set of feature points together with a ~  [InSestfuncion) ===
certainty for each selected feature point.

The specific selection function we are using selects | P —— |
feature points of maximal support in an iterative
way. The support for a certain point x&() is
calculated by aggregating the provided score

values for all points within a minStructureSize
radius around x .

Given a score field F:0—|0,1|, the algorithm
works as follows:

1. Initialize an overlay factor field Figure 20: Selection function

0:02-[0,1] with o(x)=1V x€Q

2. Perform (low-pass) frequency filtering: for each point x €(2 calculate an aggregated
score

a.= z o(x")F(x')

x'eqQ, ||x — xH<minStructureSize

This way of filtering involves a spherical-plateau filtering kernel, more specifically a
kernel function which is one for each point inside of a sphere around x and zero
everywhere else. While it is not obvious which kernel to use for frequency filtering,
the spherical-plateau kernel has the advantages of being simple and fitting naturally
to the idea of considering feature points as spheres.

3. Select a point m€ such that amzmax{ax ] xEQ}

4. If a, is smaller than some selection certainty threshold ( 0.5 was used for all exam-
ples), stop

5. Add (m,a,,) to the result set

6. As all underlying points x'€Q | ||x'—x||<minStructureSize are now conceptually
assigned to the newly selected feature m , those points shall not at the same time
provide support for another feature point. We reflect this by effectively lowering the
scores for those points to zero though.

For this, derive a new overlay field o':Q2—|0,1]| with
0'(x)=0 for all xe€Q || x—ml||<minStructureSize
and
o'(x)=o0(x) everywhere else

7. Iterate: Go back to step 2 using the updated overlay o' instead of o

- 46 -



A question which remains is why aggregated / frequency filtered scores ¢, are necessary for
the selection of features. To make the advantage of this approach clear, consider an alterna-
tive selection function which simply selects feature points based on maximum value
o(m) F (m) . While this is simpler and significantly faster computationally, it has significant
disadvantages. Figure 21 demonstrates two major problems of this approach for the simpli-
fied case of a one-dimensional score field.

Figure 21: Frequency filtered versus local maximum selection; Left: Two peeks in the score
field below the frequency limit result in the green feature for frequency filtered selection. Local
maximum-based selection results in two off-center features (red), showing that high-frequency
noise can badly influence local maximum based selection; Right: Spherical-plateau-based
frequency filtering gracefully handles differences in feature position variance up to some
degree. Local maximum selection tends to neglect feature guesses of slightly higher variance,
even if the total certainty of such is higher.

The described selection function algorithm can be slightly modified to implement “add-only”
selection. As described until here, each iteration in our framework includes a completely new
selection of feature points. While it is often desirable to allow feature points from a previous
selection to slightly move to a better location (especially one which is more consistent across
instances of some symmetry), there can be other cases where it is more favorable to stick to
the feature points from a previous iteration while only adding new feature points to the
current set. Especially, this improves the convergence of the feature point set over a number
of iterations, as no oscillation between different feature point positions is possible. For all
examples, we ran the first few iterations (usually four) with feature sets selected from
scratch each time, and then switched over to “add-only” iterations in order to achieve conver-
gence.

Performing “add-only” selection with the given selection function works by pertaining both
the overlay field o as well as the set of selected feature points = from the previous itera-
tion. Any new feature selected gets added to the existing set = , while the overlay o ensures
that no existing feature point gets selected a second time.

- 47 -



4.8.4 Propagation Functions

A propagation function assigns to a set of feature

points = a set of feature guesses. Conceptually,

any propagation function has to perform the
following steps:
1. Use the provided set of feature points = to
get an understanding of the scene's struc-

ture with respect to symmetries in the
scene.

2. Based on the structural information about
the scene, derive guesses where feature
points should be located in order to get a set

of symmetry features with respect to the
symmetries detected in the previous step.

Propagation functions are the most crucial element Figure 22: Propagation function

in our approach to symmetry feature extraction.

Especially, the choice of the selection function(s) constrains the class of symmetries for which
symmetry features can be extracted by our framework. A propagation function which detects
only translational symmetries in step one for example, cannot be used to recover missing
symmetry feature points with respect to rotational symmetries.

We restrict our considerations to rigid symmetries. For this, we propose a class of propaga-
tion functions which detect symmetries of a fixed size nE€IN in the set of feature points. We
call these small-scale symmetries sub-symmetries. After sub-symmetries have been detected,
we consider the feature-neighborhoods of all instances of a specific sub-symmetry. Features
which exist in the majority of such neighborhoods lead to the generation of associated
feature guesses. For the instances which lack a corresponding feature point in their neigh-
borhood, these feature guesses allow to recover the missing features.

In the following, we first introduce the notion of sub-symmetries in more detail and propose
a sub-symmetry detection algorithm. We further describe how feature guesses can be gener-
ated based on sub-symmetry information. Finally we give a complexity analysis with regard
to the result data size of the proposed class of propagation functions.

Sub-Symmetry Detection

The fundamental idea behind this class of propagation functions is to identify symmetries of
a fixed (usually small) size. We call such symmetries sub-symmetries, as they typically form
a small local piece of a larger-scale symmetry. While a sole sub-symmetry might not be
considered relevant for the scene's structure due to its limited size, each sub-symmetry
detected provides some evidence for the existence of a more relevant large-scale symmetry.
Combining the detected sub-symmetries stochastically leads to both reliable and robust
information about the scene's structure. What makes this approach especially appealing for

- 48 -



symmetry feature extraction is the fact that one can utilize the detection of complete sub-
symmetries in order to collect evidence for partial large-scale symmetries without explicitly
handling the case of missing data.

N-Let Sub-Symmetries

Similar to [Berner et al. 2008], we utilize the metric distance between feature points to iden-
tify symmetries. If we can find two pairs of feature points in the scene which have a similar
distance, this gives (usually small) evidence that the environments of those point-pairs
might be symmetric to each other. When speaking of symmetry features for rigid symme-
tries, isometric feature points across instances of a symmetry are actually guaranteed (as
long as the instances have at least two feature points each). We use the Euclidean metric,
which allows to find rigid symmetries. Other metrics can be easily swapped in, for example
to enable support for intrinsic symmetries.

Using feature-pair isometries to detect sub-symmetries — although conceptually simple — has
two drawbacks. At first it usually is not very distinctive and provokes a lot of false positives.
Secondly two feature points do not constrain a rigid transformation, except when adding
normal and principal curvature direction information. While adding this information solves
the problem of the partially non-constrained transformation, both normal as well as prin-
cipal curvature directions can be unstable when derived from erroneous input data points.
Also normal directions are badly constrained at sharp edges and principal curvature direc-
tions are badly constrained at circular peeks. Unconstrained symmetry transformations can
be partially handled by our framework as we will see in the part on “Propagating Neighbors”.
The bad selectivity however poses a major memory usage complexity problem for explicit
feature guess representations. As we will see in the section on result data complexity anal-
ysis, we rely on a sufficient selectivity to limit the number of resulting feature guesses.

A straight-forward solution to both problems is to consider not only pairs, but larger tuples
of feature points. For 2D manifolds, a well-chosen three-tuple is sufficient for constraining
an intrinsic translation. To fully constrain a rigid transformation with respect to the
Euclidean metric in 3D space, a 4-tuple is required (without any need to assume a manifold
scene).

-49 -



Figure 23: Quadlet examples; In the rightmost case, the red points are ambiguous with respect
to their distances to the blue and black point (blue lines are from the neighborhood graph)

Larger tuples of feature points impose a
complexity problem unfortunately, as the
number of such n-tuples in a scene with |=|

feature points is |Z|". We limit the points
which constitute an n-tuple to points that are
neighbors to each other, meaning that we use
locally contiguous n-tuples only. Some points'
neighborhood here refers to the k& nearest
neighbors in = . The (usually realistic)
assumption behind this is that sub-symmetry
structures can be found at a scale not too
much larger than the local average distances
between feature points (which is

minStructureSize at least). We call such a
local n-tuple of

feature points an

Figure 24: Quadlet correspondence; same
colors signal correspondent features in
different quadlet instances

“n-let”. Figure 23 shows examples of quadlets. After having built

/:"-4 all n-lets in a scene, isometric correspondence between n-lets
R (figure 24) can be established by comparing the 0.57(n—1)
» . pairwise distances between the feature points of which any
‘.,;' ' given n-let consists (compare figure 25).
',' ’ \“ :'
{4 ‘\ ¥

Figure 25: Pairwise
distances in a quadlet

-50 -



Propagating Neighbors

Each n-let (/,,...,/,)€Q" provides an implicit local coordinate frame. A point x& IR® can be

represented by its coordinates ( -1, ) . This coordinate mapping is not neces-

sarily injective, depending on whether the rank of the matrix (l’] Zfl (which has
/ s oo [ . as its columns) is at least four (injective) or not (not injective).
Given a set of corresponding n-lets L= ‘L . Lm‘ , we consider neighborhoods of each

instance. The local coordinate transform just introduced allows us to get coordinates for
neighbor features which are invariant under rigid transformation, as long as the same trans-
formation has been applied to the n-let which the local coordinate frame gets derived from.
By employing this local coordinate transform, it is possible to detect neighbor features which
(up to ambiguity resulting from badly constrained n-lets) occur in at least some fraction of
the corresponding n-lets' neighborhoods. We will use this information to generate feature
guesses especially for those n-let instances, where a corresponding neighbor feature is
missing. Let N L’_:IR”—> {0,1} be a function which gives one whenever there is a feature

point with given local coordinates (in practice: up to some error) in the neighborhood of the

n-let L, and zero otherwise. The ratio

=2 N ()

for some point y c|R" represented in local coordinates then allows us to asses the certainty
at which the occurrence of an n-let in [ allows to predict the existence of a neighbor feature
at the local coordinates x . In other words: having found out that a certain neighbor x

occurs in Zil N, (x) out of the |L| corresponding n-let neighborhoods, we conclude that

wherever we find a corresponding n-let, there is a point with the same local coordinates as
x with a certainty of 7,(x). Therefore, r,(x) provides an assessment score for how
strongly x is “associated” with the n-let symmetry structure represented by L .

The following cases are of special interest:

— The n-let correspondence class L might contain a mixture of n-lets from different
large-scale symmetries, which means that these n-lets are not characteristic for a
specific large-scale symmetry within the given scene. Such unspecific cases manifest
themselves in an accordingly low value of 7, .

— Different permutations of the same n feature points can occur as n-lets in the scene
in such a way that they share similar point-to-point distances, and are therefore
considered as corresponding to each other. Figure 23 (rightmost picture) contains an
example of such n-lets. The problem with these is that the local coordinate frames of
different permutations are largely different (in figure 23 : mirrored), while at the
same time the permuted n-lets themselves cannot be distinguished from each other.
More specifically: there is no canonical form to “prefer” one of the permutations over
the others. A single feature point in the neighborhood therefore has multiple local
coordinates depending on which permutation is considered. The value of 7, reflects
this uncertainty however.

-51-



In practice it makes sense to consider only n-let correspondence classes which appear to be
relevant in the scene. A straight-forward filtering is to consider classes of a certain
minimum size only, where a minimum number of three n-lets per correspondence class is
used for all examples.

Now that we have for each n-let correspondence class L a set of ratios 7, (x) for different
neighbor feature coordinates yc|R", we can use this information to deduce evidence for the
existence of a certain feature at local coordinate x in the neighborhoods of all n-lets
L,,...L, . This leads to the generation of a number of feature guesses. In the following para-
graphs, we first describe how to restrict the number of feature guesses to relevant ones, by
applying different filter criteria. Secondly, we explain how exactly the remaining feature
guesses are constructed.

For reasons of memory consumption and processing performance, we only consider neighbors

x which have 7 L,(x) greater than some constant. All examples use a value of 0.45 . The
threshold of 0.45 was chosen such that it still permits for example two different large-scale
symmetries (with each having similar number of instances) to contain n-lets which match
across both symmetries, or alternatively n-lets consisting of points which allow for two
matching permutations (e.g. n-lets that allow for mirroring in one axis). Also we require that
x occurs in the neighborhoods of at least two n-let instances.

Finally, we also check which L,€EL qualifies as a target instance for feature propagation.
Especially we do not want to propagate neighbor features to instances which have been put
into L although not constituting to the same large-scale symmetry which (most of) the other
instances in that correspondence class belong to. To detect such outliers among the instances
L, , we calculate for each instance L,€L a number p;. p, counts the number of neighbors
of L,, which have a matching neighbor in at least 0.45|L|—1 (for an explanation of 0.45,
see above) of the other instances in L . Intuitively, p. can be thought of as a “participation”
counter, saying that the neighborhood of instance L, “participates” in p; different
neighbor correspondence classes. Some specific instance L, is considered an outlier, when-
ever

1 m
<
PS5 ]ZI P
In other words, it “participates” in no more than half the number of neighbor feature points

that the average instance in L participates in.

We derive one feature guess per sufficiently supported x with respect to L for each non-

outlier target instance L, within any correspondence class L= {Ll y e Lm} .

Deriving a single feature guess g which proposes the feature at local coordinates xc|R"

within the neighborhood of an n-let L; works as follows:

-52-



First we derive a certainty y, for the guess:

We calculate the total support for the feature point represented in x across all n-let
instances by considering the certainties of the underlying feature points &,,..., &, from the
neighborhoods of the instances L), L,(, . In this list, ¢:IN*" —IN=" is an index
selection function that selects exactly the n-lets from L , where x exists in the neighbor-
hood. Let &,,..., &, be the concrete feature points with local coordinates x in the different
n-let instances' neighborhoods, and let Y: .....Y: be the associated feature point certain-

ties such that (£, y¢),....(€,,¥: JEZ . Then the overall support for x is given by

m'
Sx: Z:l Yg/
J=

We also calculate a rule-of-thumb certainty score Y., which accounts for the question
whether the symmetry characterized by the given n-let correspondence class is valid in the
first place. We simplify this score to the question of whether at least one of the instances

L, Ly, other than the target instance L, fulfills the following criteria:

1. Some instance actually exists in the sense that the underlying feature points all exist,

which for an n-let instance (l o n) is represented by the certainty

I y; with Ly, )L,y )EE
j=1

2. The same instance also is part of the larger-scale symmetry that x is in. We approxi-
mate the certainty for this by a constant y,=0.6.

Combining both criteria and incorporating the fact that a single instance other than L,
which matches the criteria is sufficient, we get the overall formula

l_ymH y//
j=

(Lol )E Ly 1) s Loy N L]

The overall certainty for g is then provided by the term

Sx
Yg:CYx,L,m

with ¢ being a general certainty correction factor which is specific to this propagation func-
tion. This factor approximates the probability that some feature point & is an actually
desired symmetry feature point under the condition that & gets predicted by the specific

propagation function with maximal achievable certainty (i.e. with yx,L,Sx|L|7l =1 in our

case). A value of around ¢=0.07 has turned out to give robust feature results. Please note
that ¢ only limits the maximum certainty that a single first-order guess of the specific prop-
agation function can have. During subsequent feature guess merging, a multitude of such
low-certainty guesses can still be merged into a single guess of high certainty.

-53 -



The distribution T, that we use for g is a multiplicative distribution with multiple
Gaussian radius sphere distributions as sub-distributions. For each / ; in (/,,...1,)=L, we
create a Gaussian radius sphere sub-distribution with radius x;, where X, is the j™ coordi-
nate of x. The rationale behind using a multiplicative distribution of Gaussian radius
sphere sub-distributions is the fact that the proposed feature point has to match all of the
coordinates, where each coordinate gives a radius around the corresponding n-let point up to
some assumingly normal distributed deviation.

While alternatively a well constrained n-let with n>4 or n>3 for the general and intrinsic
case respectively allows to derive a rigid / intrinsic mapping between corresponding n-lets
and one could use this mapping to transform one instance's neighborhood to another directly,
the approach of using a multiplicative distribution over Gaussian Radius Sphere distribu-
tions has two major advantages:

1. It gives a good representation of the uncertainty in the guessed feature's position,
without a need to explicitly assess the degree of constraint for each spatial direction.

2. Even in degenerate cases, where the n-lets do not impose a reliable local coordinate
frame (e.g. all points being located on a line), the multiplicative sphere approach does
still allow to utilize the limited information that is there (with associated problems
for feature guess merging however). Deriving a rigid transformation from such n-lets
is either impossible or unstable and largely arbitrary for noisy positions of the n-let's
points. For example with all points being approximately located on a line, a minor
variation in one feature's positions can cause the local coordinate frame used to
derive the transformation to “switch over” completely.

Additionally, we assign a correspondence set to the guess g:

Ké':}:(gl’yg)’ ""(gm”yg)}

signaling that all feature points which provided evidence for the feature guess are correspon-
dent to the guessed feature point with a certainty proportional to Yy, .

-54 -



Implementation Details

We use a default value of n=4 . N-lets are generated by iterating over each feature point
(§,y:)EE and for each feature & building all n-tuples with a set of &, neighbors. The
k . neighbors are selected such that each two of them has a minimum distance of § \/ﬁ .
The Set of neighbors is derived by iterating over the features in order of ascending distance
to &. For each such candidate feature, the minimum distance requirement with respect to
all neighbors found so far is checked and if met, the candidate is added to the set of neighbor
features. The minimum distance requirement is there to ensure that the distances between
points constituting to an n-let are significantly larger than the standard deviation for point-
to-point distances \/27(72 , which helps to establish a stable local coordinate frame based on
the resulting set of n-lets. For all examples shown, it is k., =max {6,n+1} . As the number

of generated n-lets is

kn—let .
(kn-let_ n)/ ’

k .. must not be too large if memory consumption and runtime are of concern.

—

While generating n-lets over the set of feature points = , we employ an 0.57(n—1) dimen-
sional KD-tree K, to check whether a newly generated n-let can be considered as corre-
sponding to an n-let that has been generated before. To identify corresponding n-lets in
K .., we use the pairwise distance vector for each n-let as described above.

If K, contains an n-let with a pairwise distance vector similar to the one of the currently
generated one, we merely store the tuple of n feature points of the new n-let into the existing
n-let data structure as an additional instance. Otherwise we insert the new n-let into K, .
For deciding whether merging with an existing n-let is possible, we use a matching tolerance
of 2@ for each component of the distance vector independently. Here the factor 4 is a
trade-off between false positive and false negative merging assumptions and the variance of
40? results from the fact that we are considering the difference between two distances,
which themselves are differences between two independent normally distributed point posi-
tions of variance ¢’ each. If multiple matches exist, merging is performed with the one that
is closest to the newly generated n-let with respect to the two-norm distance between both n-
let's distance vectors. An additional merging candidate validation using the two-norm (in
contrast to thresholding each pairwise distance independently) can optionally be performed
in order to make merging candidate selection invariant towards the direction of the differ-
ence between the distance vectors.

A similar approach is taken to find corresponding neighbor features once local coordinate
frames have been established in the form of an n-let correspondence class L . While iter-
ating over all instances L,=(/,, ..., ), each of the k nearest feature points around /,
(with &,

L, . For each such neighbor feature, a KD-tree K, (which is individual for each n-let corre-

prop
=12 for all examples) are characterized by their local coordinates with respect to

spondence class L ) is checked for whether it already contains a point with similar local

coordinates from another instance. A per-coordinate tolerance of 1.5+4 " is used here.

-55 -



Gaussian radius sphere sub-distributions are generated with a variance of 3 g2, which
accounts:

1. the double-variance in the measured distance between the corresponding reference
point in the source n-let and the source feature point being propagated

2. plus the uncertainty in the position of the center point of the Gaussian radius sphere,
which is the corresponding reference point in the target n-let.

Comparable to the current implementation of feature guess merging, establishing correspon-
dence between both n-lets and neighbor features has the issue of depending on the actual
order in which n-lets and neighbors respectively are inserted. Please refer to chapter 4.5.2
for a more detailed discussion of this issue.

Result Data Complexity Analysis

As mentioned in chapter 4.5.2, the number of generated guesses is crucial in order to not
exceed limits on memory consumption, as well as for runtime complexity. Thanks to the way
in which only sufficiently supported neighbor features of a class of corresponding n-lets lead
to feature guesses, the number of guesses generated by the n-let-based propagation functions
can be shown to be no more than linear in the number of feature points.

We generate a total number of
kn—let .
(kn—lct_ l’l).’

n-lets per feature point (&, )/,5)65 , with k.. being the (constant) number of neighbors
considered in n-let generation. Therefore we have a total number of n-lets

N_ |E|kn-let'/ E@H:H
B (kn—lct_n)-/ o

Due to the merging scheme employed, each n-let can participate in one correspondence class
only, as it is either stored into the KD-tree as a new n-let or added to an existing n-let data
structure as an additional correspondent instance.

Each n-let has exactly & neighbor features which are considered for feature guess gener-

prop
ation, which again is a fixed constant. Within some n-let correspondence class L , each of
the & .,

class, as the same argument as for n-let correspondences applies.

|L| neighbors can only be assigned to a single neighbor feature correspondence

After clustering neighbor features into correspondence classes, we throw away correspon-
dence classes which contain less than 0.45|L| neighbors. Therefore, the maximal number of

-1
rop0-45 , as

|L| neighbor features.

neighbor correspondence classes that remain for L can be no more than f

each correspondence class “occupies” at least 0.45[L| of the &,

-56 -



The total number of feature guesses generated for [ can now be constrained. We generate
one feature guess for each n-let in [ per remaining neighbor correspondence class at
maximum. We get for the number of feature guesses

k
P2|Ll=|G JeollLl]
0.45

G,|<

Even more, this constrains the number of feature guesses generated for the whole scene. As
the sum of all n-let correspondence class sizes |L| can be no more than the number of n-lets
N, we generate no more than

k k

k ..!
prop N: E prop "V n-let EO‘ E
0.45 | |0.45(kn_m—n)/ =l

feature guesses.

There is one remaining issue about the result data memory consumption however. Although
the number of feature guesses is no more than linear in the number of feature points, the
size of feature guesses g is not constant, as each contains correspondence information K,
which can be linear in the number of feature points. A trick can however be used to limit
memory consumption: Instead of storing pairs (&,,y g) to denote a correspondence with &,
at certainty y,, we can instead store relative certainties. More exactly, we store pairs
(£,,1) in which the relative certainty 1 has to be multiplied by Y, before yielding the
actual correspondence certainty between the feature point proposed by g and &;. While the
guess certainty Y, can be different for each generated guess, the set K B " of correspondence
pairs with relative correspondence certainties is the same across all guesses 2€G,; gener-
ated for some n-let correspondence class L . Furthermore, each such correspondence set
K,' can have no more than [L| elements, as that is the maximum size of any neighbor
feature correspondence class for L . This leads to a limit on the number of different sets
Kg, Of kprop
correspondence class L . Storing each such set only once and using a constant-size pointer in

0.457", each with no more than |L| correspondence elements for each n-let

the generated feature guesses to point to the associated correspondence set restricts the

memory consumption to O(kpmpO.4571 |L|) for each L , and

o
0.45

k ‘ ‘
ﬂm):oum):ouan

in total.

- 57 -



-58 -



5 Evaluation

We evaluate the behavior of our framework and of the incorporated sub-symmetry detection
on one artificial and a number of scanned real-world data sets.

The following data sets are used:

— Embossed houses (figure 26): We generated this
artificial example by drawing the house structure, )
applying a small-scale Gauss filter, copying, trans- < b
lating and rotating the house drawing to four N
different locations, adding a few small mistakes to
one of the instances (including a missing edge) and

then embossing the image into a point sampled 3D " | 5)
plane. The data set was sampled to 37797 points. —— L /
Please note that the white area in figure 26 also
contains points.

Figure 26: Embossed houses
data set

— Old Hannover town hall (figure 27): This scan of a
historic building in Hannover was done using 3D s
laser scanners. For our experiments, we cut out a ‘

part of the scene. Limited outlier point removal was
performed and the whole data resampled to 82818
points. (courtesy of the Institute for Cartography
and Geoinformatics Hannover).

Figure 27: Hannover town
hall data set

— Zwinger (figure 28): The Dresden Zwinger data set
is another building digitalized by the use of 3D laser
scanners. We sampled the scene to a total of 76231
points. (courtesy of M. Wacker)

Figure 28: Zwinger data set

-59 -



Ambasciata del Brasile (figure 29): This digitaliza-
tions of the front of the Brazil embassy in Rome was
obtained by 3D data reconstruction from photogra-
phies, and has a comparably high noise level. The
scene was sampled to 455938 points. We applied
limited outlier points removal. (courtesy of Blizzard
Entertainment Inc.)

Thai elephant statue (figure 30): The Thai statue
scene was obtained using a 3D laser scanner. We use
only an excerpt from the statue, consisting of 144392
points. (from the Stanford 3D Scanning Repository)

-60 -

Figure 29: Ambasciata del
Brasile data set

Figure 30: Thai statue data
set



5.1 Feature Extraction Results

Figures 31 to 34 show the
results of feature point I o o

extraction for different > ,f: »°
data sets. Red points are ,‘3 > ’ ' \ ; Pa
initial features, in other - p A3 19 AR
words those which have
been extracted based on :’ b » .
local interest purely, while 9 " 5 8%
blue points are those 's Py ( fs / &
features  that  where . L:L’_ o {7

—

selected only with the help
of feature propagation.

The Embossed houses results were achieved Figure 31: Embossed houses feature points

after two iterations (one iteration for the
selection of interest features, second with propagation) with slight tweaking of
minStructureSize and g’ parameters, slippage interest was used. Processing of the houses
scene took 2 minutes and 1 second. While the chimney features are not fully consistent
across all instances, the completion of the

feature point
in the bottom
right corner of

the house is
remarkable

here, as
purely  local
criteria would not have allowed to detect this
feature point in the incomplete instance. Also
interesting is the added feature in the top
left of the chimney of the bottom right house Figure 33: Old town hall feature points

instance. No other instance has a feature at

the corresponding location, so this feature completion must have been due to an erroneous
sub-symmetry match, which together with the local interest raised the combined score just
enough to qualify that point for feature selection.

-61-



The old Hannover town
hall data set shows well the
selective  completion of
features in the upper row
of windows. As a conse-

quence of noise and holes
in the data, eight of those
feature points were absent
in the initial interest-based
feature selection and could
be completely recovered by
feature propagation. We
performed seven iterations
for this data set, using the
multiplicative interest
combiner function and slip-
page-based interest. The overall running

time of our algorithm was 2 minutes and 58
seconds. Figure 32: Thai elephant feature points

For the elephant from the Thai statue we used slippage-based interest and the default
combiner without mandatory local interest. Feature points on the elephant's trunk were
completed up to some degree, with seven correct ones being added there due to feature prop-
agation. Feature extraction took 4 minutes and 29 seconds at seven iterations.

The Dresden Zwinger data

set took 5 minutes and 14
seconds to get processed. The
multiplicative interest
combiner was deployed here
with slippage-based interest
scores. We ran seven itera-
tions.

All running time measure-
ments mentioned here do not

include the time required for

slippage and/or curvature
analysis. They do however
include a run of our propagation function applicability analysis algorithm from chapter 4.4.

Figure 34: Zwinger feature points

Measurements were performed on a Intel Core i7 620M mobile CPU with two cores and four
gigabytes of main memory.

5.1.1 Choice of Parameters

We evaluate the effects of different parameters and interest function constellations with
respect to feature extraction. Specifically, we compare the initial feature points provided by
slippage- and curvature-based interest and also consider the combination of both. With

-62 -



respect to interest-based feature point selection, we also examine different feature point
selection thresholds. Finally, we compare feature extraction results after a varying number
of iterations of our framework.

Interest Features

We have experimented with slippage and ;
Gaussian curvature-based interest functions ) S“ppage
as well as combinations of both. Figure 35 3
compares initial interest-based feature points
that were selected based on slippage, curva-
ture and combined interest respectively.
Curvature-based feature selection reveals
many unexpected feature points, and at the
same time lacks many others. Overall,

feature point placement is comparably irreg-
ular with curvature-based interest. Slippage
features on the other hand are much cleaner
and more regular, although a few of the
useful features that were found in the case of

curvature interest are missing here. A combi-
nation of curvature and slippage interest
with weights of 0.9 for slippage and 0.6 for
curvature interest yi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>